基于DFT的Cu/SiO2衬底选择性原子层沉积前驱体筛选

DFT-based precursor screening for selective atomic layer deposition on Cu/SiO2 substrates

  • 摘要: 选择性原子层沉积技术在纳米级材料制造中具有显著优势,其核心原理是利用前驱体在不同区域表面的反应速率差异实现选择性沉积。针对半导体互联及后道工艺中介电材料的准确定位沉积需求,采用结合微动力学方法的密度泛函理论(DFT),系统揭示前驱体在Cu/SiO2表面的吸附与分解机制,并耦合原子层沉积(ALD)的反应条件,定量描述了前驱体在两种衬底表面的反应速率与覆盖率。基于两种表面覆盖率的差异,对10种Al/Si源前驱体进行选择性筛选。结果表明,Cu和SiO2表面的吸附能范围分别为−1.70~−0.62 eV和−0.93~−0.31 eV。大部分前驱体在Cu表面的反应能垒低于在SiO2表面,而DMAI在SiO2表面的反应能垒更低。进一步分析表明,DMAI在SiO2表面与Cu表面的覆盖率之比为2.63×108,TEA和BEMAS在两种表面的覆盖率接近,这3种前驱体均表现出对SiO2表面的选择性沉积潜力。研究结果为实验前驱体的选择了提供理论指导。

     

    Abstract: Selective atomic layer deposition(ALD) exhibits significant advantages in the fabrication of nanoscale materials, fundamentally leveraging the differential reaction rates of precursors across distinct regions. This study focuses on the deposition process alignment of dielectric materials in semiconductor interconnects and back-end processes. Using density functional theory (DFT) combined with micro-dynamics analysis, we elucidate the adsorption and decomposition mechanisms of the precursors. By further integrating these insights with ALD process conditions, we achieved a quantitative description of the reaction rates and coverages of precursors on Cu/SiO2 surfaces. The selectivity of ten Al/Si precursors was screened based on the coverage discrepancy between the two surfaces. Results indicate that the adsorption energies on Cu surfaces range from −1.70 eV to −0.62 eV, whereas on SiO2 surfaces, they range from −0.93 eV to −0.31 eV. For the majority of the precursors, the reaction energy barriers on Cu surfaces are lower than those on SiO2 surfaces. Notably, DMAI exhibits a lower reaction energy barrier on SiO2 surfaces. The coverage ratio of DMAI on SiO2 to Cu is 2.63×108, TEA and BEMAS demonstrate comparable coverage on both SiO2 and Cu surfaces, indicating their potential for selective deposition on SiO2. This study provides theoretical guidance for the experimental selection of precursors.

     

/

返回文章
返回