硅基GaN深槽刻蚀隔离工艺研究

Research on Deep Trench Etching and Isolation Process of Silicon-based GaN

  • 摘要: 在这项工作中,我们研究了应用于硅基GaN平台单芯片集成的深槽刻蚀及隔离的相关工艺。我们优化了感应耦合等离子体(ICP)刻蚀的工艺参数和刻蚀气体(Cl2和BCl3)的组分比例,并在刻蚀深槽后,通过等离子体增强化学汽相沉积(PECVD)和等离子体增强原子层沉积(PEALD)技术在深槽内沉积绝缘介质。在GaN外延层(~1.8μm)的极限电压(200 V)下,沉积SiO2的深槽的泄漏电流(~1μA/mm)比离子注入隔离的泄漏电流(~10μA/mm)低一个数量级;得益于PEALD-Al2O3的均匀覆盖和有效钝化,泄漏电流可以进一步降低一个数量级(~0.1μA/mm),充分体现了深槽隔离的优势。因此这项技术有助于推动硅基GaN单芯片集成的发展与应用。

     

    Abstract: In this work, we have investigated the deep trench etching and isolation technology applied to the monolithic integration of the silicon-based GaN. The etching parameters of the inductively coupled plasma(ICP) and the composition ratio of the etching gas(Cl2 and BCl3) have been optimized. The insulating dielectrics have been deposited in the deep trench by plasma enhanced chemical vapor deposition(PECVD) and plasma enhanced atomic layer deposition(PEALD). The leakage current of the deep trench with SiO2 deposition(~1 μA/mm) is one order of magnitude lower than the leakage current with ion implantation isolation(~10 μA/mm) at the limit voltage(200 V) of the GaN epitaxial layer(~1.8 μm). Due to the uniform coverage and effective passivation of PEALD-Al2O3, the leakage current can be further decreased by one order of magnitude(~0.1 μA/mm), which indicates the advantages of deep trench isolation. Therefore, this technology can promote the development and application of the monolithic integration of silicon-based GaN.

     

/

返回文章
返回