固相反应烧结法制备Nd:LuAG透明陶瓷

Nd:LuAG transparent ceramics fabricated by solid-state reactive sintering

  • 摘要: 对于具有高重复频率的高能固体激光器,应优先选择具有合适饱和通量的增益介质,其中Nd∶LuAG因其优异的光学、机械和热力学综合性能,展现出更大的发展潜力。石榴石基激光陶瓷具有理论光学质量高、制备周期短、热导率高、能够实现激活离子的高浓度均匀掺杂和易于实现复合结构制备的特点,是一种极具应用前景的增益介质材料。本研究以商业Lu2O3、α-Al2O3和Nd2O3的粉体作为实验原料,采用正硅酸乙酯(TEOS,Tetraethoxysilane)和CaO作为烧结助剂,经过真空预烧(1825 ℃×5 h)结合热等静压烧结(1750 ℃×3 h)制备了不同TEOS添加量的1at.% Nd:LuAG透明陶瓷。HIP后的(1750 ℃×3 h,200 MPa)1 at.% Nd:LuAG透明陶瓷的平均晶粒尺寸为15.2 μm左右,在1064 nm处的直线透过率随TEOS添加量增加先升高后降低。添加0.6 wt.% TEOS和0.05 wt.% CaO的1 at.% Nd:LuAG透明陶瓷在1064 nm处的直线透过率为83.6%。高光学质量Nd:LuAG透明陶瓷的成功制备对重复频率纳秒高能固体激光器性能的提升具有重要意义。。

     

    Abstract: For high repetition rate nanosecond high power solid-state lasers, it is essential to choose gain media with moderate saturation flux. Among these, Nd:LuAG transparent ceramics have shown significant potential due to their outstanding optical, mechanical, and thermodynamic properties. Garnet laser ceramics have the characteristics of high theoretical optical quality, short preparation cycle, high thermal conductivity, the ability to achieve high-concentration and uniform doping of active ions, and ease of fabricating composite structures. They are a promising gain medium material with great application potential. Using the commercial Lu2O3, α-Al2O3 and Nd2O3 powders as raw powders. The 1 at.% Nd:LuAG transparent ceramics with different TEOS additions were fabricated by vacuum pre-sintering at 1825 ℃ for 5 h and HIP post-treatment at 1750 ℃ for 3 h using TEOS and CaO as sintering additives. The average grain size of the 1 at.% Nd:LuAG transparent ceramic after HIP (1750 °C × 3 h, 200 MPa) is approximately 15.2 μm. The in-line transmittances at 1064 nm initially increases and then decreases with the increase in TEOS addition. The in-line transmittances of 1 at.% Nd:LuAG transparent ceramic with 0.6 wt.% TEOS and 0.05 wt.% CaO is 83.6% at 1064 nm. The successful preparation of high optical quality Nd:LuAG transparent ceramics is of great significance for the enhancement of the performance of repetitive frequency nanosecond high-energy solid-state lasers.

     

/

返回文章
返回