Citation: | CHEN Peng-yu, WEN Xin-tao, HU Zhi-chen, XI Bin. Research progress on precursors for atomic layer deposition of borides[J]. Journal of Functional Materials and Devices. |
Borides have garnered extensive applications and in-depth research across multiple fields, with particular focus on boron oxide and boron nitride. As semiconductor technology continues to advance, the use of boron oxide in ultra-shallow silicon doping, especially in advanced CMOS technologies, is attracting increasing attention. Its unique doping characteristics demonstrate significant potential for optimizing device performance and enhancing integration density. Simultaneously, the importance of boron nitride in the field of semiconductor ferroelectric memory doping is becoming increasingly prominent. This article aims to review the latest research progress in boron oxide and boron nitride within the field of atomic layer deposition (ALD), introduce commonly used boron precursors and co-precursor materials, and focus on ALD-based growth techniques. The performance of related thin-film devices fabricated using these methods is also analyzed and reviewed. Based on these advancements, this paper explores future directions for the development of atomic layer deposition techniques for borides and provides valuable insights for research and development in the semiconductor industry.
[1] |
Pilli A, Jones J, Lee V, et al. In situ XPS study of low temperature atomic layer deposition of B2O3 films on Si using BCl3 and H2O precursors [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36(6): 061503.
|
[2] |
Lee J, Ravichandran A V, Mohan J, et al. Atomic Layer Deposition of Layered Boron Nitride for Large-Area 2D Electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36688-36694.
|
[3] |
Kim W H, Oh I K, Kim M K, et al. Atomic layer deposition of B2O3/SiO2 thin films and their application in an efficient diffusion doping process[J]. Journal of Materials Chemistry C, 2014, 2(29): 5805-5811. DOI: 10.1039/c4tc00648h
|
[4] |
Sohn I, Choi T, Kim J, et al. Ultra Low-k Properties of Atomic Layer Deposited Amorphous Boron Nitride for Futuristic Inter Metal Dielectric. 2024 IEEE International Interconnect Technology Conference (IITC), 2024: 1-3.
|
[5] |
Leskelä M, Ritala M. ALD precursor chemistry : Evolution and future challenges [J]. Le Journal de Physique IV, 1999, 09 (PR8): 837-852.
|
[6] |
Johnson A L, Parish J D. Recent developments in molecular precursors for atomic layer deposition [J]. In Organometallic Chemistry, 2018: 1-53.
|
[7] |
Putkonen M, Niinistö L. Organometallic Precursors for Atomic Layer Deposition [J]. In Precursor Chemistry of Advanced Materials, 2005: 125-145.
|
[8] |
Johnson R, Hultqvist A, Bent S. A brief review of atomic layer deposition: from fundamentals to applications[J]. Materials Today, 2014, 17(5): 236-246. DOI: 10.1016/j.mattod.2014.04.026
|
[9] |
Li J, Chai G, Wang X. Atomic layer deposition of thin films: from a chemistry perspective[J]. International Journal of Extreme Manufacturing, 2023, 5(3): 032003. DOI: 10.1088/2631-7990/acd88e
|
[10] |
Guo D, Wan Z, Fang G, et al. A Tandem Interfaced (Ni3S2‐MoS2)@TiO2 Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst[J]. Small, 2022, 18(24): 2201896. DOI: 10.1002/smll.202201896
|
[11] |
Wenjie T, Qiang C, Yuefei Z, et al. Investigation of Plasma Polymerized Maleic Anhydride Film in a Middle Frequency Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2008, 10(2): 176-179. DOI: 10.1088/1009-0630/10/2/07
|
[12] |
Mane A U, Elam J W, Goldberg A, et al. Atomic layer deposition of boron-containing films using B2F4 [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(1): 01A132.
|
[13] |
Putkonen M, Niinistö L. Atomic layer deposition of B2O3 thin films at room temperature[J]. Thin Solid Films, 2006, 514(1-2): 145-149. DOI: 10.1016/j.tsf.2006.03.001
|
[14] |
Kalkofen B, Amusan A A, Bukhari M S K, et al. Use of B2O3 films grown by plasma-assisted atomic layer deposition for shallow boron doping in silicon [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33(3): 031512.
|
[15] |
Ashik E, Misra V, Lee B. High Mobility 4H-SiC P-MOSFET via Ultrathin ALD B2O3 Interlayer between SiC and SiO2[J]. Solid State Phenomena, 2024, 359: 171-180. DOI: 10.4028/p-deE3Ln
|
[16] |
Park H, Kim T K, Cho S W, et al. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition[J]. Scientific Reports, 2017, 7(1): 40091 DOI: 10.1038/srep40091
|
[17] |
Consiglio S, Clark R D, O'Meara D, et al. Comparison of B2O3 and BN deposited by atomic layer deposition for forming ultrashallow dopant regions by solid state diffusion [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(1): 01A102.
|
[18] |
Driver M S, Beatty J D, Olanipekun O, et al. Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001)[J]. Langmuir, 2016, 32(11): 2601-2607. DOI: 10.1021/acs.langmuir.5b03653
|
[19] |
Beatty J, Cao Y, Tanabe I, et al. Atomic layer-by-layer deposition of h-BN(0001) on cobalt: a building block for spintronics and graphene electronics[J]. Materials Research Express, 2014, 1(4): 046410. DOI: 10.1088/2053-1591/1/4/046410
|
[20] |
Jones J, Beauclair B, Olanipekun O, et al. Atomic layer deposition of h-BN(0001) on RuO2(110)/Ru(0001) [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017, 35(1): 01B139.
|
[21] |
Ferguson J D, Weimer A W, George S M. Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3[J]. Thin Solid Films, 2002, 413(1-2): 16-25. DOI: 10.1016/S0040-6090(02)00431-5
|
[22] |
Weber M, Koonkaew B, Balme S, et al. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16669-16678.
|
[23] |
Song L, Ci L, Lu H, et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers[J]. Nano Letters, 2010, 10(8): 3209-3215. DOI: 10.1021/nl1022139
|
[24] |
Shi Y, Hamsen C, Jia X, et al. Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition[J]. Nano Letters, 2010, 10(10): 4134-4139. DOI: 10.1021/nl1023707
|
[25] |
Kim S M, Hsu A, Park M H, et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance[J]. Nature Communications, 2015, 6(1): 8662. DOI: 10.1038/ncomms9662
|
[26] |
Kim K K, Hsu A, Jia X, et al. Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices[J]. ACS Nano, 2012, 6(10): 8583-8590. DOI: 10.1021/nn301675f
|
[27] |
Hayden J, Hossain M D, Xiong Y, et al. Ferroelectricity in boron-substituted aluminum nitride thin films[J]. Physical Review Materials, 2021, 5(4): 044412. DOI: 10.1103/PhysRevMaterials.5.044412
|
[28] |
Deng B, Zhang Y, Shi Y. Examining the ferroelectric characteristics of aluminum nitride-based thin films[J]. Journal of the American Ceramic Society, 2023, 107(3): 1571-1581.
|
[29] |
Song L, Ci L, Lu H, et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers[J]. Nano Letters, 2010, 10(8): 3209-3215. DOI: 10.1021/nl1022139
|
[30] |
Shi Y, Hamsen C, Jia X, et al. Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition[J]. Nano Letters, 2010, 10(10): 4134-4139. DOI: 10.1021/nl1023707
|